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The coupled problem of thermoelasticity for a half-space in the case of an infinite heat 

propagation velocity has been considered in [l to 41. It was found there: the solution 
for sinall times by an expansion in the small coupling parameter 6 ; the asymptotic 

behavior of the solution between the surface of the half-space and the acoustic wave 
front for large times ; and aiso the value of the jumps in the various quantities and their 

derivatives at the acoustic wave front. The same set of questions is examined herein, 

but the asymptotic behavior of the solution for large times is studied in the whole domain 
of existence of the solution, For small and moderate times (66 - 1) the maximum stress 
is achieved at the accoustic wave front, This maximum decays exponentially, and 

depends on the velocity of heat propagation. A second maximum, whose propagation 

velocity and magnitude are independent of the velocity of heat wave propagation, is 
manifest at considerable times ( t6 * 1). This maximum decays as -l/h, hence, it 

yields a fundamental contribution to the state of stress at very large times. 
Taking account of the finiteness of the heat propagation velocity, the heat conduction 

equation is discussed and derived in [5 to 81, 

A term taking account of the inertia of the thermal flux 

ag aT 
~~++a=--k~ (1) 

appears in the Fourier law. 
The energy conservation Eq. 19-J. the equation of motion in the acoustic approximation, 

and Hooke’s law are 

ac aa au i (2) 

atr- 3F9 37’ 1-P ~"+(l+p)ctT 3 
Here T is the temperature: 4 the heat flux; U the displacement in the X direction 

perpendicular to the half-space surface (X > 0) ; 0 the normal stress in a plane parallel 
to the surface ; 6 the time ; 7 the relaxation time of the heat flux: x the heat conduc- 
tivity ; P the density ; cp , cv the specific heats at constant pressure and volume, respec- 
tively ; U the coefficient of thermal expansion ; p the Poisson coefficient; G the shear 
modulus . 

Let us reduce the system to nondimensional form by introducing the quantities 
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as the time, length, temperature, stress, displacement and heat flux scales, where ~2 is the 

coefficient of thermal diffusivity, amd c the propagation velocity of the compression 

wave, 

After having been reduced to nondimensional form, the system becomes (the nondimen- 

sional variables are now denoted by the same symbols) 

where b has the meaning of a nondimensional velocity of thermal perturbation for the 
uncoupled problem ( 6 = 0). 

Stresses are absent in the half-space at the initial instant and the temperature is con- 

stant, F is henceforth measured from precisely this initial level. For 6’> 0 perturba- 

tions are given on the surface. There are no internal heat sources, Hence, if the velo- 

city of all the perturbations is finite, then all the partial derivatives with respect to time 

are zero throughout at the instant ti = 0. 

Applying the one-sided Laplace transform to the system (3), after simple manipulations 
we obtain &* 

-- 
dti (4) 

where the asterisk denotes the transform. We seek the solution in the form exp( ,%c). 

For k we obtain (5) 

The problem is considered in the X > 0 half-space, hence, the general solution has 
the form u* = cl exp (-h+r) -j- c2 exp (---k-z) 

Here h and k are the arithmetic roots corresponding to the solution which decays 

asx-++oo, 

Let us consider the V. I. Danilovskaia problem 

0 = 0, T = q (t) r i tt > 0) 
for x=0, q(+ o(t<o) 

Using the third and fourth Eqs. of (3), we obtain for the transform 

u*= 0, for 2 = 0 

After having satisfied the boundary conditions, the solution for the transform becomes 

rJ*= p2 
exp (- jE+z) -exp (-4-r) 

k+a-- k-2 - 

We obtain the original by means of the inversion formula 

1 
0=2ni 6*ePf dp - = F (k,) -F (k_) 

P 

a+& 

F VQ=& S 

exp (it - Jy4 
WJ~P, WQ = k+a_k 2 (fi) 

u--i00 
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i e, the solution consists of two waves being propagated with the velocities V? and U,. 

For X > U+$ we have p( &+) = 0. The dependence of U, and U, on b for 6 = 0.073 
is pictured by solid lines i~?Fig, 1. The asymptotes pictured by dashes yield the wave 

velocities of the uncoupled problem ( 6 = 0). The waves are hence separated into acous- 

tic < Us = 1) and thermal (Ut = b) S There is no such separation for the coupled problem: 

the waves are divided into fast (I.?4 and slow (0,) l 
For small 6 it may provisionally be 

assumed that for b L 1 the acoustic wave (Us ) will be the fast wave (V_) , and for b > 1, 
the slow wave (U,) . 

It follows from (7) that k+ is analytic in 

the neighborhood of p = m ,>nd the point 
$2 = GG will be an isolated singular point for 
G(h). Then by applying customary opera- 

Fig. 1 Fig, 2 

gration in (6) may be transformed into the neighborhood of the infinitely distant point 

and CT may be evaluated by residue theory 

G= res G (k,) r) 
p=cKl 

res G (k,} = 
p=cO - 



Formula (8) yields a formal solution of the problem, however, the series in (8) converge 
poorly for Iarge 8 and X and, in practice they may only be utilized in a few casec: for 
small 7? , in the neighborhood of the front of a fast wave (small 8 ), and ro compute t?;e 
stress jumps on the wave fronts (8+ = 0) equal to 

cxp C-P _&.4 
- i-i,6 

i.i 
____ _ 1 )’ _i_ ~- 1-l ’ 

b2 
The dependence of the decay coefficienrs @* on b is presented in Fig, 2 for 6: 0.017 

(solid curve) and 6 = 0 (dashed). In the neighborho~ of the point b= 1 the phenomenon 
of resonance is observed, and the stress jumps at the fronts of both waves decay with the 

identical rate (for 8 = 0, P,(l) = fi_‘r) = ‘/a). At the acoustic wave front, 13 approaches 

the classical [l and 21 value f 6 sufficiently rapidly as b -303 , 
To obtain more information about the solution it is necessary to express it in terms of 

the singularity of the transform in the finite part of the plane. The roots &., k_ and 

b2 -k2 pr ~0, pz = -_b2 ps,r = - { (WI - 1 + 6 12 + (2P2) + @/WI ) i i I’-% 
l(l/‘W - iI8 + (6/W 12 + (2 + 6)/W 

are possible branch points. If p1, pa and p3. phare connected in pairs by slits, 
then ?L+ and &L are analytic outside these slits, and are branches of a multivalued func- 
tion. Three cases of the mutual disposition of the slits may be distinguished depending 

on b : the vertical slit (a) lies to the left of the horizontal slit (p1 ,po) (b c 1) p (b) 
intersects the horizontal (b u 1) , (c) lies to the right ( b > 1). The integral along the 
line (a - &Q , CJ + &J ) in the inversion formula may be replaced by integrals along the 

slits traversed counter- clockwise DO] 

for cases (a), (b) and (c)~ respectively. 

The solution (9). written in the form of integrals, is useful in that the asymptotic expan- 
sion for large x and $ may be obtained from it, and this is of greatest practical interest 
because of the smallness of the length and time scales utilized in defining the nondimen- 

sional quantities. Formula (9) may be simplified since the integrals of G&) and G( k1 

along the vertical slit (pa .pd) are equal. The fact is that the roots &I,. and k. change 

into each other upon passage through the vertical slit, and the root in the denominaror 
of the inregrand has different signs on the sides of the slit Formula (9) becomes 

I {W. t)+jll(2-~)-ll(t--~)1P$)C(k_)dp} a==- (W 
Pa 

To obtain the asymptotic represemTion let us use the saddle point method, The 

saddle points will be the roots of the Eqs. 

at* I ap = 0 (f* = p - k,u, of = x/t) (14) 

l-hey are easily found for @ at 6 = 0. In the c&se of an arbitrary parmeter Ei Eq ‘ 
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(11) must be solved numerically. However, we can limit ourselves to small 6 since 6 

does not customarily exceed 0.1 , We hence obtain for the saddle point of @ 

b2 

i 

1 
p-t = 2 - f f J,fl _ $)z’ + 

va6 c (1-P) &=-gF*(l+b*) I 
-- 

+2 @‘%-~2-_~~ (l-i_b2) i’&-zG/b’&fl - b’) f2(1 - v’/b2) 
1 

+ 0 WI 

tm 

The largest value of .? is achieved at p+ , hence, the principal term of the asymptotic 
expansion of i7 becomes 

= = j’%[l - b2 f ( ? j- b2) ;-I (1 - vg/b*)Yr 

+ 2::z + 2A2 
3Aaj2+4v~-3A1 ~ - 

2Az” (13) 

(Ao= Jfv, A, = 1 + bs + (1- ba) 7/i - us/P 

Aa = I- 63 + (1 f P) l/i - @/b2, ~0 = (I/b*) - 1) 

+) kmax (6. -+-)] , [O<v<da (+* @+)] 

&<v<v_.6>1] 9 [i - $&J 

The inequality in the first square brackets shows that (13) is not applicable when 

v 4 2bs/ (1 + as) as b r 1 since b-bco results from (13) for A 2 -, 0. In fact. 0 remains 
finite and continuous in this domain, (The curve U = 2b2/(l + baj is shown by dot- 
dashes in Fig, I.> . 

In the saddle-point method the integral over the slit is replaced by an integral over 

the contout ImJ@ = const passing through the saddle points, Not only the horizontal but 
also the vertical slits fall into this contour for Z.7 > 2@/(1 + ba)* Hence, in the case 
2b2/(1 + b2> <U s U+ Formula (13) does not yield the stress for b < 1 because the 

integral of G( k-1 over ~1, ~2) is no longer estimated in (13). 
U is described by (13) with 2 a /( 1 +b2) <u c U.. for *b s 1. 

For this sune n&son 

The inequalities in the 
second and third square brackets indicate these facts l 

And finally* the fourth parenthesis means that (13) is not valid for V -*b q Hence, 
0-ra 9 i e, f changes slightly along the line of steepest descent 

The saddle point method becomes inapplicable since the large parameter t is multi- 
plied by the small parameter 1 - V2/b2 , 

The function (13) has a maximum, propagated with velocity u,=(i-6) ‘)i/gir . This 
maximum is equal to (rre) -‘/I t-1 (1 - (J/J 8). The exponent of the exponential in- 
creases in absolute value with distance from the maximum deep into the half-space, and 
rapidly becomes approximately 6 , hence the stresses at 

1 
2P 

*+ i+~r<v<@- to b>t 

may be considered zero for large t . 
Formulas (12) and (13), as well as the majoriry of the subsequent results, are generally 

inapplicable in case (b). 
The integral along the vertical slit in (9) may also be esdmated by the saddle point 
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method, by utilizing the fact that the length of this slit is of the order of /a in cases 

(a) and (c). Then for /h << 1 , in the neighborhood of the slit, J?+ may be represented 

approximately as 

b’ (1 - v) 
fe=- I_._& 

zi (1 - b2) 4&s l,l’? 

4&J z2 + F------ _@)dj + 

+0(d) + O(z') (z = p - Re p3) 

points are easily found 
j= b3 [4b2 - 2’ (1 + 3b?)] t/s 

2(1 - 
-- 

b’)’ I/(v - 1) (262 --2~ (1 + b”)) 
L. 

c 14) 

(15) 

In this case the saddle 

z 

The condition for applicability of (141 is : Z-V’ b . It is seen from (15) that this con- 
dition is not satisfied if U+ 2 b2/(1 + b ) or 23 -+ 1 (more exactly : u -+ us ). The first 
member of the asymptotic expansion has the form (261 

P4 
1 

2ni 

G(k_)dp_ ~ex~[-b~!l--l?)-~(t-~+b-~ ~6(t--~)(2b~t--- ~(1 +zq))] 

- 

Pa 
[48 (V - 1) (2b2 --v (1 + b2))]2 (J-C+ 

It is seen from (16) that far from the acoustic wave front the exponent of the exponen- 
tial is _ 6 in absolute value for ,.fs +X 1 and the integral may be considered practically 
zero for t z++ 1 . On the other hand, (16) also shows that the greatest stresses will be in 

the neighborhood of the acoustic wave front, Evidently, that value of u where the stress 
decays least, i. e. where f is a maximum, is of greatest interest Such a point of the 
wave for large & will primarily determine the state of stress. Denoting the saddle points 

and the value of J@ there by Pn(U) and f, =J@(&(U). U) and taking account of (11). 

we obtain *rtl df 8Pn ai ai 
z =~au-av~-~ --_k(p,)=t) 

dv - 

to find the maximum value off . 
Eq. k(p,) = 0 has two roots: $71 = 0 and ,& = - b” , The first root yields the maxi- 

mum, Let us find the expansion of the corresponding branch of ?z( which we denote by 

km) in the neighborhood of the point p = 0 

(17) 

Hence 

Pn~_vm-7-- (3 4 6)“, f __1v’1+s-4” 
R (1 + 6)” 

6 26 

The contribution of the horizontal slit may be neglected in the neighborhood of the 

maximum stress and the main term of the asymptotic expansion becomes 

(1 + 6P 
[ 

( eT3 - VY (1 + (SP 
S=mexp - 26 t]++&) (18) 

It is seen from (18) that the maximum stress decays N f. Jt and is propagated with 
velocity JX for all b. The mode of the peak stress is also independent of b . 

To estimate the state of stress at the acoustic wave front in case (a) it is convenient 

to utilize (8). In case (c) the integral of G( J-L_ ) over @a , p4) may be replaced by the 
corresponding integral of G( k+) . The contour of integration in the latter may be trans- 

formed into the neighborhood of the infinitely distant point, p = 0 of case (c) is not a 
branch point of k 4, which is hence analytic outside the slit (p3, p4), i.e. in case 
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(c) we can write 
* ? 

-zz- (ft 
G (a_) dp = - res G (li+) fi9) 

PI 
p=&l 

Utilizing (8) and (19). and neglecting the contribution of the horizontal slit, an expres- 

sion for ~7 as a series in 6 may be obtained for cases (a) and (c), in which the first two 

members are 

5” 
Q= -1-_exp - 

If x6 s 1 ) then all terms except those containing %C in the coefficients of the series 

in e+ in (8) and (19) may be neglected, Then the series may be summed and we obtain 

Expression (21) has been obtained as a result of selective summation of an alternating 
sign series, and represents the solution only in a small neighborhood of the acoustic wave 

front. 

Expressions (13),{16),(18),(26) and (21) describe the behavior of the stress for large $ 
and small 6 for different X + The stress in tbe neighbors of the acoustic wave front 

turns out to be most essential. By comparison, the stresses at other places may be neg- 

lected. The maximum for not very large 6 is determined by (20). and by (18) for 

tb=J.. The mutual role of these two maxima depends on the quantity 6 . For very 
small 6 (for example, 6 N 10”” for quartz), the role of the first maximum will be great, 
est, and for such materials the beat propagation velocity will be the essential character- 

istic. For not very small 6 w 0‘01 to 0.1 (metals), the second maximum will be more 
important + and the heat propagation velocity is an inessential characteristic. If the prob 
lem of harmonic oscillations at lower frequencies is examined (all frequencies presently 

accessible in the nondimensional variables utilized will refer here), then a wave is 
obtained which is propagated at the phase velocity m and is independent of b, Th 
second maximum is some kind of Green’s function of such a slow wave, The analysis 

carried out refers to cases (a) and Cc) ; about case fb) (I- 6 < b < l+ 3 6 for d e 1) it 

is only known that the jumps in stress on the fronts of both waves decay very rapidly. 
Apparently the behavior of the stress for fi z@ 1 is determined by (18). whose validity is 

indirectly confirmed by the fact that case (b) is not singular for harmonic analysis, 
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